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A class of constants of motion is obtained for the time-dependent form of the 
Rayleigh stability equation, which provides stability criteria for velocity profiles 
with multiple inflexion points. 

1. Introduction 
The standard method for obtaining stability criteria from the linearized equations 

for an inviscid incompressible fluid in plane parallel flow is a normal-mode analysis, 
which leads to the Rayleigh stability equation (Drazin & Reid 1981, equation 
(21.17); Drazin & Howard 1966, equation (2.11)). Our approach is based on the time- 
dependent form of this equation, namely 

Pd+ia(UP+U”)$ = 0, a < z < b,  t > 0, ( 1 . 1 )  

$(a,t ;a) = 0 = $(b,t;a), t 2 0. (1.2) 

with rigid-wall boundary conditions 

Here a is the real wavenumber, U(z)  is the basic velocity profile, +(z , t ;u )  is the 
Fourier transform (with respect to the space variable in the direction of the basic 
flow) of the stream function for a small perturbation about the basic flow, P is the 
differential operator -a2/az2 + 2, ’ = d/dz, and ’ = a/at. In this paper we develop 
criteria which guarantee that the solutions $ will be pointwise bounded in- 
dependently oft. Our method permits results for profiles V(z) with any finite number 
of inflexion points, and we recover the Rayleigh and Fjrartoft criteria (Drazin & Reid 
1981 ; Drazin & Howard 1966) when U” has no zeros or just one. 

2. Stability 
We assume that U”(z )  is continuous on [a, b]  and consider solutions $ of (1 .1)  that 

are, for each fixed t > 0, twice continuously differentiable functions of z on [a, b] and 
satisfy the boundary conditions (1.2). Then P admits the inverse P-l, an integral 
operator whose kernel is the Green’s function for P (Craik 1972, equation (2.1)). The 
operator P-’ is Hermitian and positive with respect to the complex inner product 

b 

(f,g) = I f(z)g(z)dz, and llp-lll = A-l 
a 

where A = [n/(b - a)I2 +a2 is the least eigenvalue of P. For every solution $ satisfying 
our smoothness conditions, we define 

(2.1) ( ( 2 ,  t ; a) = P$(z, t ;  a), a < z < b,  t 2 0, 

8-2 
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so that qi = P-16 (2.2) 

6 = -iuW(, t > 0 with W = U”P-’+U. (2.3) 

and (1.1) takes the form 

Our stability analysis hinges upon the elementary observation that 

[u”]-lW= P-’+U/U” 

is Hermitian as is [U”]-’ (assuming that U“ has no zeros in [a ,  b] so that the operator 
[u”]-l is defined). This implies that (d/dt)(C, [u”]-’5) = 0 for all solutions 6 of (2.3). 
Indeed, we have the following result (Barston 1977) : If G is independent of t and G 
and GW are both Hermitian then so is GW” for any positive integer n ;  and if p ( x )  is 
any real polynomial in x ,Gp(W)  is Hermitian and (d/dt)(&Gp(W)[) E 0 for any 
solution 6 of (2.3), i.e. (&Gp(W)fJ is a constant of the motion. Thus if Gp(W) is 
positive definite (i.e. ( f , G p ( W ) f )  2 611fl12 where 6 > 0 and 6 is independent off)  we 
have 

(2-4) Sll<ll2 < (69 G P W )  0 = ( 6 0 9  GP(W) 5 0 ) ,  t 2 0, 

where to = [ ( z ,o ;a ) .  Using the Cauchy-Schwarz inequality, with a < z < b and 

which demonstrates the pointwise boundedness of qi independent oft. Thus we have 
stability for perturbations of wavenumber a. If Gp( W )  is positive definite for all 01, 

the inverse Fourier transform of $ ( z ,  t ;  a) leads to 

where y is the spatial coordinate in the direftion of the basic flow and &y, z ,  t)  is the 
(untransformed) stream function. Hence qi is bounded independently of t for all 
initial disturbances for which STrn & da converges. 

We adopt this as our definition of stability, and seek to construct positive definite 
operators of the form Gp(W). 

In  the circumstance that u“ does not vanish on [a, b] ,  so that either u“ or - u“ is 
positive definite on [a,  b ] ,  we take G equal to the reciprocal of whichever is positive, 
let p ( x )  = 1, and conclude that ( 2 . 5 ~ )  holds with 6 = minfa,bl IU”(Z)I-~ > 0. Thus we 
have Rayleigh’s stability theorem : U“ =i= 0 on [a, b] implies stability. 

There remains the question of stability when u“ has at least one zero in [a, b] .  It 
proves helpful to return briefly to the case U” + 0. With G = [u”]-l and C, a real 
constant, we consider the following operators : 

u- c, 
Gl G(W-C,) = - + P-l, u“ 

+ ( U -  ez) P-1 + P-l( u- e2) + p-1 u”p-1, (u-C,)(u-C,) 
u“ 

G2 = G(W-Cl) (W-C2)  = 

(2.7) 
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+(U-e,)2p-l+P-'(U-e3)2+ (U-6 , )  p-l(U-6,) 
+ [36,)2-$(c; + c; + Ci)]  p-1 + p-1 up-1 u"p-1 
+ ( U -  6,) P-1 UP-'+ p-1 u"p-'( U -  6,) 
+ P-l( u- 6,) U"p-1, (2.8) 

where e, e (CjL_, C j ) / n .  In  general, 

(U-C,)(U-C,) ... (U-C,) 
+H,, U" G, G(W-Cl)(W-Cz) ... ( W - C , )  = 

where H, has no terms containing (U")-l and is well-defined, bounded, and 
Hermitian regardless of whether U" has zeros. Thus the right-hand sides of (2.6)-(2.9) 
will define G, even in the case where u" has zeros, provided that the real constants 
C,, . . . , C, can be selected so that 

(U-C,)(U-C,) ... (U-C,)/u" 

is extendible to a continuous function on [a,b].  This requires that 
(U-  C,)( U -  C,) . . . ( U -  C,) vanish at  each zero of U" in [a,  b],  and that for each such 
zero g, 

(U-  C,)(U-C,) . . . (U-C,) 
u" 

lim 
2 4  

exists as a finite number. We assume henceforth that this holds and interpret 
(U-  C,)( U - C,) . . . (U-  C,)/u", wherever it appears, as the continuous extension of 
this function to all of [a,  b].  We define G ,  by the right-hand side of the appropriate 
equation from (2.6)-(2.9). Then G, is Hermitian, and it can be verified directly that 
G, W is also Hermitian, so that (d/dt)(& G, f )  = 0 for solutions 6 of (2.3). Sufficient 
conditions for the positive definiteness of a G, then become, via (2.4) and (2.5), 
sufficient conditions for stability. 

3. GI and Fjnrrtoft's criterion 
Suppose that U" has zeros in [a,  b] and that U at every zero of U" has the common 

value C,. We assume that lim,,,(U-C,)/U" exists and is finite for every zero 6 of 
U" in [a,  b]. 

Let (U-  C,)/U" 2 0 for all z in [a, b].  Since (6, G, f )  is a constant of the motion for 
all solutions of (2.3), we have 

(6 ,  P-l 5) G (5, G, 6) = ( f o ,  G, to), t 0, 

and (2.5) yields I$(z, t ;  a)[ < (z-a):(co, G, to):, t 2 0, and we have stability. This is 
Fjmtoft 's criterion. 

On the other hand, i fM = maxf,,bl (U-C,)/U" < - IIP-'II = -Ap1, then 

(f9Glf) = (f,[(U-C,)/U"lf)+(f,P-lf) < w+ Ilp-lll) Ilfll2 < 0, 

so that -G, is positive definite and we have stability for disturbances with 
wavenumber a satisfying a2 > -M-' - [n / (b -  a)]'. This is criterion (v)' of Craik 
(1972). Thus ifM < - (b-a)2 /n2 ,  stability obtains for every a and the flow is stable. 
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Suppose ,u(z) is a basic flow with a single inflexion point at z,, with 

~ ” ( 2 )  = ( z - z l ) p ( z ) , p ( z )  > 0 on [a,bl. 
Consider the two-parameter family of flows U ( z )  = ,u(z) +Az + y ( A ,  y real constants) 
with the same second derivative p”(z). Let 

P l ( 4  = ~ ~ Z ) - P ~ Z 1 ) 1 / ( Z - ~ , )  for z * Zl,,u1(Z,) = P’(Z1). 

Then ,ul(z) is continuous on [a ,b] ,  p(z)-p(z,) = (z-zl),ul(z), and the choice 

C,  = U(z,) = ,u(zl) +Axl + y gives G, = (pl(z) + A ) / p +  P. 
Hence G, > 0 if A > A ,  = -min[a,bl,ul(z) while 

-G, > 0 if A < A ,  = -maxla,bl [ ( b - ~ ) ~ / n ~ ) p ( ~ ) + p , ( z ) ] .  

Thus the addition of a ‘background’ shear flow Az to ,u results in a stable flow 
provided that the shear coefficient A lies outside the interval [A1,A,]. We shall see 
that a similar result holds for basic flows with any finite number of inflexion points. 

4. The case of two or more zeros 
We consider the case where u” has two distinct simple zeros z1 < z2 in (a,  6). 

Specifically, we take V ( z )  = (z-z,)(z-z,)p(z),  where p(z)  is a non-vanishing 
continuous function on [a,b]. Then for C, = U(zj ) , j  = 1,2, 

by L’HBpital’s rule, and G, = [(U-C,)(U-C,)]/U”+ H, is well-defined by the right- 
hand side of (2.7). If H, were positive definite, we would have a simple stability 
criterion analogous to  the Fjmtoft criterion, but unfortunately H, is indefinite. 
Indeed, by (2.1 )-( 2.2), 

([,H,[) = ([,[(U-6,)P-1+P-1(U-6,)+P-’u”P-1][) 
= (9, [P(u-e,,+(u-e,)P+u”]$b) 

b 

= 2 5  (U-6‘,)(19’12+a219(2)dz, 
a 

where we have used the fact that  

PU+UP+u”= 2 - - U - + a 2 U .  [ :z :z 1 
The continuity of U implies that 

min u < 6, = :[U(Z,) + ~ ( z , ) ]  < max U,  
[a. bl [a, bl 

and since U is smooth and z1 and z2 are points of inflexion, U(zj)_cannot be the 
maximum or the minimum value of U on [a, b ] .  Thus miq,, bl U < C, < maxEa, b] U ,  
and it follows immediately from (4.1) that H, is indefinite. However, since 

b 

(6, P - l t )  = (9, P9) = [1$b’I2 + a21$b121 dz, 

(;:; u-6,)(5,P-l5) < (U-6,)[1@’(2+a21g512]dz < maxU-6, ([,P-l(), 
( I a . b ,  
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and (4 .1)  yields 
2 min U -  C, A-' < H, < 2 max U - C, A- l .  (4 .2)  

(La,bl .. ( [ a , b ]  - 
Let 

Then 
m , + 2  minU-C, k 1 < G , < M , + 2  maxU-C, A - l ,  

( [ a , b l  ( [ a , b ]  

so that if m, > 0, G ,  will be positive definite for disturbances 
satisfying 

a2 > 2m;' C,-min U -n2(b-a)-' ,  ( [ a , b ]  

while if M ,  < 0, - G ,  will be positive definite for disturbances 
satisfying . .  

Thus if 

a2 > - 2M;' max U -  C ,  - n2(b - a)-, 
( [ a , b ]  

m2 > 2 7 ~ - ~ ( b - a ) ~  C,-minU ( [ a . b ]  

M ,  < - 2 2 ~ - ~ ( b - a ) ~  max U-C, 
or ( [ a , b ]  -1  
stability obtains for every a and the flow is stable. 

with wavenumber a 

with wavenumber a 

As an elementary example of the application of these inequalities, consider the 
basic flow 

where V and A are constants and the inflexion points are z1 = 0 and z2 = gb. It is 
readily demonstrated, with a little algebra and some simple (and rough) estimates, 
that (4 .3)  holds for A < -7 ,  and so this flow is stable whenever A < - 7 .  

Suppose p(z) is a basic flow with p"(z) = ( z -z1 ) (z -z2 )p (z )  with p(z) positive 
and continuous on [a, b ] ,  and consider the family of flows U ( z )  = p(z) +Az+ y ( A ,  y 
constants). 

Then pj is continuous on [a,b] and p(z)-p(z,) = ( z - z j ) p j ( z )  for a < z < b. Hence G,, 
defined by the right-hand side of (2 .7)  with C, = U(z,),j = 1,2 ,  takes the form 

+P"-1;)+P-'p''Y-', 

where z" = $(zl + z,), 1; = +&(zl) +p(z,)]. 

(4 .5)  
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Since min[u,b, (p, +A)(,u, + A ) / p  can be made as large as we please by taking IAl 
sufficiently large and is of order A,,  while the remaining terms consist of bounded 
operators whose norms are a t  most of order A , G ,  will be positive definite for IAl 
sufficient large. Specifically, suppose 

A > A+ = -min min,ul, minp, . { la.bl la.61 i 
Then (A  +,ul)(A +,u,)/p 2 ( A  -A+)2/p", where p = maxl,,b,p. If U is replaced by z and 
then by ,u in (4 .1)  and (4 .2) ,  the results obtained together with (4.5) yield, for A > A+,  

(4.6) 
where 

G, 2 [ ( A  - A + ) 2 -  ( A  - A + ) B -  C](p")-l, 

B = 2p"A-l(i-a) > 0, and C = 2 ~ A - ' ~ + A + ~ - m i n ~ , , b I ( p + A + z ) ]  > 0. 

The inequality (4 .6)  shows that G, is positive definite when 

A > A++;[B+(B2+4C)t ] ,  (4.7) 

and we have stability for perturbations of wavenumber a. Similarly, it can be shown 
that G, will again be positive definite if 

A < A - - ; [ D + ( D 2 + 4 E ) i ] ,  
where 

max,u1,maxp, , D = 2p"A-l(b-i), 

E = 2p"L1@ +A- z" - min (p +A- z ) ]  . 
[a.bl la.61 I 

[ a ,  bl 

(4.8) 

Since A-l = [n2(b-u)-2+a2]-'  < (b-u)2n-2 ,  inequalities (4 .7)  and (4 .8)  will 
imply stability of the flow (i.e. stability for all a) provided that A-l is replaced by 
(b-u)2n-2  in the definitions of B, C, D and E .  

The symmetric flow ,u = V cos (pz lb) ,  - b < z < b,  with V a positive constant and 
in < p < gn has the two inflexion points z1 = - 2 ,  = -b<, where $ < <,, = n(2P)-' < 1. 
One readily finds that 

min ( ,u+A+z)  = V(cos P-p) = min (,u+A-z). 
[-b, bl [-b, bl 

The replacement of A-l by ( b  - a)' = 4b2n-, gives 

B = D = 2<i4 V / b ,  C = E = 2<;4 172 bk2(p-cos p), 
so that by (4.7)-(4.8),  the basic flow U = V cos ( p x / b ) + A z + y ,  in < p < @, will be 
stable for all A lying outside the interval [ -A, ,  A , ] ,  where 

A ,  = ~ , + ~ - ~ ~ ; 4 ( 1 + [ 1 + 2 < ~ ( p - ~ 0 ~ ~ ) 1 ~ )  > A ~ + ~ F % - ~ < ; ~  (4 .9)  

and A ,  = PV/b = max[-b, bl I,u'(z)l. As p increases from in to gn, z2 decreases from b to 
ib and <i4 increases from 1 to  81, so that A ,  increases away from A ,  dramatically. 
Note that the flow is stable for 0 < p < in by Rayleigh's criterion. 

where 

I n  the case of n simple zeros, we write 

U = ,u+Az+y,  U" = p" = (z-zl) ... (z-z , )p(z)  
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on [a ,  b]  with a < z1 < z2 < ... < z ,  < b, define p, and C, = U(z,) as before for 
1 < j < n,  to obtain 

(U-C , ) (U-C, )  ... ( U - C , ) / V  = (pl +A)(pu,+A)  ... (p, + A ) / p .  

The minimum of the absolute value of this quantity on [a,  b ]  will become arbitrarily 
large for (A1 sufficiently large and is of order IAnl, while the terms in H, will be at most 
of order An-1, so that G, or -G, will be positive definite for IAl sufficiently large. 
Thus if the absolute value of the shear coefficient A is sufficiently large, the flow will 
be stable. 

5. Summary and conclusions 
For a given basic flow U(z) ,  we have constructed a class of Hermitian operators G, 

(equations (2.6)-(2.9)) which have the property that (P#, G ,  P$) is a constant of the 
motion for perturbations 4. The construction of a G, which is po!itive (or negative) 
definite for all wavenumbers a implies that the stream function #(y, z ,  t )  is bounded 
independently of t (equation (2.5a, b ) )  and hence that the flow is stable, i.e. 
perturbations which are initially small remain small for all t > 0. This method thus 
provides more information than the usual normal-mode approach, which, owing to 
the presence of a continuous spectrum for the Rayleigh equation, must be 
supplemented with an analysis of the initial-value problem (e.g. via the Laplace 
transform) to conclude stability (Drazin & Reid 1981). 

The search for a positive (or negative) definite G, led us to the Rayleigh criterion 
for flows with no inflexion points, to the Fjortoft criterion for flows with one inflexion 
point, and to the stability criteria of (4.3) and (4.4) for flows with two inflexion points. 
Finally, it was shown that for flows with any finite number of inflexion points, the 
addition of a 'background ' shear flow Az to the original flow will result in a stable 
flow if IAl is sufficiently large, provided that U" is the product of a polynomial in z 
and a continuous non-vanishing function p ( z ) .  
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